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AGENDA 

• This presentation covers AMD code submissions that have been integrated into Unreal Engine 3 
 

• Tessellation 
• Phong Tessellation 
• Tessellation Optimizations 
• Performance considerations 
  

• Multi-monitor Support 
• Eyefinity support code  
• How to test multi-monitor support on a single monitor 

 

• Vertex Shader-Based Bokeh Depth Of Field (DOF) 
• Implementation 

• Performance considerations 
 

• Post-Process Full Screen Anti-Aliasing (FSAA) 
• MLAA support 
• Performance and quality comparison 
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TESSELLATION  
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TESSELLATION TECHNIQUES 

Displacement mapping with flat tessellation 

– Requires a height map for displacement 

– Generates high-quality bumpy surface 

PN-Triangle tessellation 

– No displacement map required 

– Used to generate smooth silhouette  

– Hull shader for patch construction 

Phong tessellation 

– No extra displacement map required 

– Used to generate smooth silhouette  

– No patch construction required 
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DISPLACEMENT MAPPING WITH FLAT TESSELLATION 
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DISPLACEMENT MAPPING WITH FLAT TESSELLATION 
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PN-TRIANGLE TESSELLATION 

 
PN-triangles is a purely local scheme 

Construct a cubic Bezier patch according to the three vertex positions and normals 

of a triangle in the Hull shader 

Control points of triangular Bezier patch Normal component of PN-Triangle 

Pictures from “Curved PN Triangles” white paper, Vlachos et al. 
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PHONG TESSELLATION 

Phong tessellation is also a purely local scheme 

No need to construct complex patch in Hull shader 

– Simple Hull shader, just pass over vertex position and normal 

– Simple shader == better performance 

Phong is simpler and more efficient than PN-Triangles 

– Yet produces very similar visual output 

– … at much better performance! 

 

 P 

P* 
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NO TESSELLATION 
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PN-TRIANGLE TESSELLATION 
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PHONG TESSELLATION 
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TESSELLATION COMPARISON 

PN-Triangle Tessellation Phong Tessellation 
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NO TESSELLATION 
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PN-TRIANGLE TESSELLATION 



15 |  Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions |  March 8, 2012 

PHONG TESSELLATION 
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UE3 TESSELLATION FEATURES 

Tessellation modes 

– Flat Tessellation 

– PN-Triangle tessellation 

– Our submission adds Phong Tessellation mode into UE3 

– Can add displacement map to any tessellation mode 

Built-in adaptive factor based on triangle screen-space size 

– Allows constant and predictable performance 

– Avoids generation of very small triangles which are inefficient (<8 pixels) 

– More optimizations can be selected to improve performance further 
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TESSELLATION PERFORMANCE 

Tessellation is not free! 

– Use with caution otherwise it can impact performance considerably 

– Should only be used where image quality can be improved 

 

Adaptive tessellation keeps tessellation requirements reasonable 

– Vary tessellation factors based on real-time metrics 

– UE3 implements screen-space adaptive optimization 

 

More aggressive optimizations are required to keep performance up 
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MORE AGGRESSIVE OPTIMIZATIONS 

Backface culling 

– Set tessellation factor to 0 on back-facing (i.e. invisible) triangles 

– Warning: some back facing triangle still contribute to a silhouette! 

View frustum culling 

– Don‘t waste tessellation power on invisible triangles 

– Set tessellation factor to 0 if the whole triangle patch is outside the view frustum 

Orientation-Adaptive Tessellation 

– Only silhouette patches contribute to silhouette enhancement 

– Silhouette patches therefore get higher tessellation factors 
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MATERIAL EDITOR 

New Phong tessellation mode 

Two new optimization options for all tessellation modes 
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UDKENGINE.INI  

• Two new variables in UDKEngine.ini 

• TessellationBackfaceCullingThreshold 

• If (dot(N,  V) < -TessellationBackfaceCullingThreshold)  

  Tessellation factor = 0; 

• TessellationOrientationThreshold 

• EdgeScale = 1.0f – abs( dot( N, V ) ); 

• Tessellation factor = 

(EdgeScale – TessellationOrientationThreshold) / 

(1.0 – TessellationOrientationThreshold); 
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PHONG TESSELLATION 

No Tessellation Phong Tessellation with 

backface culling and orientation 

adaptive factor 



22 |  Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions |  March 8, 2012 

REAL-TIME DEMO 

How to activate Phong tessellation and optimizations in material editor 

Show real-time orientation adaptive optimization demo in UE3 editor 
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PERFORMANCE NUMBERS 

Tessellation performance on AMD Radeon HD6970  

BackfaceCullingThreshold=0.6  

OrientationThreshold=0.0 
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MULTI-MONITOR 
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WHY SUPPORTING MULTI-MONITOR 

Multi-monitor configurations are becoming more common as a result of the 

affordability of LCD monitors! 

 

Technically easy to support in your titles (with some extra care for HUD) 

– Multi-Monitor is "just" a single larger render target from the programmer's perspective 

 

AMD’s code submission for Eyefinity makes it even easier 

– Developers are able to test multi-monitor on a single monitor system 
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SINGLE MONITOR VS. MULTI-MONITOR 
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HOW TO SUPPORT MULTI-MONITOR 

Don’t block any special aspect ratio resolution (i.e. 5760x1200) 

– Game should be flexible with its supported resolutions 

Expand Field of View according to the resolution 

– Most common Multi-Monitor resolution is 3:1 landscape 

– Set vertical axis to a fixed FOV and let horizontal FOV expand with resolution 

Place HUD to the middle monitor 

Cut-scenes and movies should be played on the middle monitor and retain their 

original aspect ratio 

– Use bConstrainAspectRatio property of camera to keep the right aspect ratio for your movie 

– FOV expansion will be disabled if bConstrainAspectRatio is TRUE 
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WHAT AMD HAS DONE FOR YOU 

Use “AllowAMDEyefinity“ in UDKEngine.ini to enable Eyefinity support 

Expand FOV according to the resolution 

– Use "EyefinityFOVThreshold" in UDKEngine.ini to limit the Max FOV in X axis 

Place HUD to the middle monitor 

– Only works on Gfx HUD component 

– It detects the Eyefinity mode then place Gfx HUD component against middle monitor 

automatically 

Test multi-monitor support on a single monitor 

– Programmer fills out the window resolution and monitor configuration in C++ code 

– This feature is only activated on debug version 

– Convenient feature for developers if they don't have access to all Eyefinity configurations 
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SAMPLE SCREENSHOTS 
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SAMPLE SCREENSHOTS 
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REAL-TIME DEMO 

Demonstrate UDKGame without Eyefinity support 

Demonstrate how to test Eyefinity support on a single monitor machine 
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VERTEX SHADER BASED 

BOKEH DEPTH OF FIELD 
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BOKEH DEPTH OF FIELD (DOF) IN UE3 

New stunning UE3 post-processing effect introduced last GDC 

In photography, Bokeh is the blur in out-of-focus areas of an image. 

UE3 Bokeh DOF uses the Geometry Shader (GS) to generate a massive number 

of point sprites to simulate Bokeh 

– Generates 1 to 4 Bokeh point sprites for every 4 pixels of half-resolution image 

UE3 renders Bokeh DOF into two layers (foreground and background) to avoid 

artifacts 

DirectX® 11 only 
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BOKEH DOF CODE SUBMISSION 

Generating a massive number of point sprites in the GS impacts performance! 

We moved it to the Vertex Shader (VS) 

– Performance improvement is quite large on some hardware 

– Visual results unchanged 

Now supports DirectX 9 level hardware after moving it to the VS 

– Cost a bit more video memory in DX9 mode to store vertex IDs 

Video memory footprint is the same in DirectX 11 mode 

– No actual vertex buffer is needed 

Triangle and Quad Bokeh supported 
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VERTEX IDS 

DirectX 11: 

Use system-generated vertex IDs (SV_VertexID) 

Bind NULL Vertex Buffer 

– Vertices are generated in the vertex shader without buffer input 

 

DirectX 9: 

Generate a vertex buffer with vertex ID attributes to emulate same functionality 

Generate (HalfResX/2)*(HalfResY/2)*3*4 vertices (for triangle Bokeh) 

– (HalfResX/2)*(HalfResY/2)*6*4 vertices for quad bokeh 

A new vertex buffer is created on resolution change  
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IMPLEMENTATION 

Render the vertex buffer (NULL on DX11) as a triangle list 

Use vertex ID to compute current Bokeh ID 

– Triangle number = (VertexID/3). (VertexID%3) is local triangle vertex index 

– If using quads: Quad number = (VertexID/6). (VertexID%6) is local quad vertex index 

Compute the Bokeh position and texture coordinates in Vertex Shader 

– For NULL Bokeh: place all vertices at the same position to skip rendering 

– (VertexID%12) to get the vertex index ID in a Bokeh group 

Place all last 9 vertices at the same position to eliminate 3 triangles 

– (VertexID%24) for quad 
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IMPLEMENTATION 

Shift and scale vertex position to simulate multiple viewports in DX11 

– Original code uses multi-viewport to render both foreground and background Bokeh into a 

single render target 

 

 

 

 

 

 

– Use clip() in pixel shader to simulate viewport clipping 

Compute the clip distance in Vertex Shader 

 

 

Foreground 

DOF Viewport 

Background 

DOF Viewport 
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IMPLEMENTATION 

Alternate solution for simulating viewport clipping 

– Create a bigger render target with buffer in the middle 

– Faster, no clipping is needed 

– Costs a little more video memory 

– Bokeh may cross the buffer if it’s bigger than the buffer 

 

Foreground 

DOF Viewport 
Background 

DOF Viewport 
buffer 
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TRIANGLE OR QUAD? 

Should one use a triangle or quad to represent a point sprite? 

Using triangles can reduce vertex processing cost by 50% compared to using quads 

But triangle point sprite may not be a good solution for big Bokeh shapes 

– Rasterization/fill-rate power will be wasted on invisible pixels (red area) 

 

 

 

We implemented both 

Simply use preprocess in C++ code to switch 

– #define __TRIANGLE_BOKEH__ 1 

 

Bokeh texture 

 Wasted fill-rate 

 Wasted fill-rate 
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PERFORMANCE NUMBER 

Performance test map : EpicCitadel 

Small Bokeh setting (not fill-rate bound for triangle Bokeh)  
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PERFORMANCE NUMBER 

Bokeh DOF on AMD Radeon HD 6970 @ 1920x1080 
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PERFORMANCE NUMBER 

Bokeh DOF on GTX 580 @ 1920x1080 
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POST-PROCESS FULLSCREEN ANTI-ALIASING (FSAA) 
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POST-PROCESS FSAA 

Why using Post-Process Fullscreen Anti-Aliasing? 

– MSAA  doesn't work for deferred shading when using DX9 level hardware 

– MSAA is expensive with deferred shading (performance and memory footprint) 

– MSAA doesn't work with transparent textures (alpha-tested) 

– Post-Process FSAA does not add any complexity to the rendering pipeline 

– Easy to change, modify or optimize without adverse effects on other rendering stages 

– It can also work with MSAA 

UE3 supports two types of post-process FSAA since the July 2011 build 

– Fast Approximate Anti-Aliasing (FXAA) 

– Morphological Anti-Aliasing (MLAA) 
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COMPARISON 
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COMPARISON 

No AA MLAA 
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FXAA OVERVIEW 

Single-pass post-processing 

No extra render target required 

Tends to detect too many edges and prone to blur non-edge pixels 
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MLAA OVERVIEW 

Three passes post-processing 

– 1st Pass : Detect edges 

– 2nd Pass : Compute edge length 

– 3rd Pass : Blend edge color according to the edge type and length 

Needs two extra render targets 

– One is for storing edge mask 

– One is for storing edge length 

Can detect edges pretty well so that only edge pixels are anti-aliased 

Adjustable edge detection level 

– It's good for performance tuning 

 

 



49 |  Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions |  March 8, 2012 

FXAA AND MLAA COMPARISON – EDGE DETECTION 

Edge pixels detected by MLAA (in red) Edge pixels detected by FXAA (in red) 
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FXAA AND MLAA COMPARISON – EDGE DETECTION (ZOOMED-IN) 

Edge pixels detected by MLAA (in red) Edge pixels detected by FXAA (in red) 
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UE3 POSTPROCESS AA 

UE3 supports both from July 2011 build 

Can be activated in uberpostprocess node 

 

 

 

MLAA needs to be activated from UDKEngine.ini file 

– bAllowPostProcessAA = True 

– Default is OFF 

Good AA solution for deferred shading 

Supports both DX9 and DX11 
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CONCLUSION 

Tessellation  

– New Phong tessellation mode which generates similar visual output to PN-Triangle but at 

much  better performance  

– New optimization options for all tessellation modes 

Multi-monitor 

– Automatic FOV expansion and HUD placement 

– Simulate multi-monitor on single monitor system 

Vertex Shader Based Bokeh DOF 

– Huge performance improvement 

– Support both DirectX 9 and DirectX 11 

Post-processing FSAA 

– Already in UE3  since the July 2011 build 

– More efficient option over MSAA when using deferred shading 
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QUESTIONS? 

Send your feedback/suggestion to  

owen.wu@amd.com 

 

 

 

 

 

CODE SUBMISSION DOWNLOAD LINKS 

 https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/Eyefinity.rar 

 https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/VSBokehDOF.rar 

 

 

mailto:owen.wu@amd.com
https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/Eyefinity.rar
https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/VSBokehDOF.rar
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AFDS gives you direct access to some of the world’s authorities and the most detailed 

training in heterogeneous computing, OpenCL™, OpenGL, DirectCompute, and C++ AMP. 

 
10 Technical Tracks 

1)Heterogeneous Computing 

2)Web Technologies 

3)Cloud Computing 

4)Gaming and Consumer Graphics 

5)Innovative Client Experiences 

6)Multimedia Processing 

7)Professional Graphics & Visual Computing 

8)Programming Languages and Models 

9)Programming Tools 

10)Security 

Industry Leading Keynotes 

Phil Rogers, AMD 

Tom Malloy, Adobe® 

Dr. Amr Awadallah, Cloudera 

Mark Papermaster, AMD 

Phil Pokorny, Penguin Computing 

June 11-14, 2012 

amd.com/afds 
AMD FUSION12 DEVELOPER SUMMIT (AFDS) 
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Be one of the first 100 GDC attendees  

to register for AFDS and save $100.  

 

REGISTER TODAY 
Just use this code when you register:  

GDC100 

June 11-14, 2012 

amd.com/afds 
SPECIAL OFFER  

FOR GDC ATTENDEES 
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DISCLAIMER 
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and 
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between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to 
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from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes. 
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