
ENHANCING GRAPHICS IN UNREAL ENGINE 3

TITLES USING NEW CODE SUBMISSIONS

Owen Wu

Developer Relations Engineer, AMD

Owen.wu@amd.com

mailto:Owen.wu@amd.com

2 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

AGENDA

• This presentation covers AMD code submissions that have been integrated into Unreal Engine 3

• Tessellation
• Phong Tessellation
• Tessellation Optimizations
• Performance considerations

• Multi-monitor Support
• Eyefinity support code
• How to test multi-monitor support on a single monitor

• Vertex Shader-Based Bokeh Depth Of Field (DOF)
• Implementation

• Performance considerations

• Post-Process Full Screen Anti-Aliasing (FSAA)
• MLAA support
• Performance and quality comparison

3 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

TESSELLATION

4 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

TESSELLATION TECHNIQUES

Displacement mapping with flat tessellation

– Requires a height map for displacement

– Generates high-quality bumpy surface

PN-Triangle tessellation

– No displacement map required

– Used to generate smooth silhouette

– Hull shader for patch construction

Phong tessellation

– No extra displacement map required

– Used to generate smooth silhouette

– No patch construction required

5 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

DISPLACEMENT MAPPING WITH FLAT TESSELLATION

HULL

SHADER
TESSELLATOR

Triangle Patch

Mesh

Tessellated

Mesh

6 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

DISPLACEMENT MAPPING WITH FLAT TESSELLATION

DOMAIN

SHADER

Tessellated

Mesh

Displaced

Mesh

Displacement map

7 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PN-TRIANGLE TESSELLATION

PN-triangles is a purely local scheme

Construct a cubic Bezier patch according to the three vertex positions and normals

of a triangle in the Hull shader

Control points of triangular Bezier patch Normal component of PN-Triangle

Pictures from “Curved PN Triangles” white paper, Vlachos et al.

8 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PHONG TESSELLATION

Phong tessellation is also a purely local scheme

No need to construct complex patch in Hull shader

– Simple Hull shader, just pass over vertex position and normal

– Simple shader == better performance

Phong is simpler and more efficient than PN-Triangles

– Yet produces very similar visual output

– … at much better performance!

 P

P*

9 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

NO TESSELLATION

10 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PN-TRIANGLE TESSELLATION

11 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PHONG TESSELLATION

12 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

TESSELLATION COMPARISON

PN-Triangle Tessellation Phong Tessellation

13 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

NO TESSELLATION

14 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PN-TRIANGLE TESSELLATION

15 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PHONG TESSELLATION

16 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

UE3 TESSELLATION FEATURES

Tessellation modes

– Flat Tessellation

– PN-Triangle tessellation

– Our submission adds Phong Tessellation mode into UE3

– Can add displacement map to any tessellation mode

Built-in adaptive factor based on triangle screen-space size

– Allows constant and predictable performance

– Avoids generation of very small triangles which are inefficient (<8 pixels)

– More optimizations can be selected to improve performance further

17 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

TESSELLATION PERFORMANCE

Tessellation is not free!

– Use with caution otherwise it can impact performance considerably

– Should only be used where image quality can be improved

Adaptive tessellation keeps tessellation requirements reasonable

– Vary tessellation factors based on real-time metrics

– UE3 implements screen-space adaptive optimization

More aggressive optimizations are required to keep performance up

18 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

MORE AGGRESSIVE OPTIMIZATIONS

Backface culling

– Set tessellation factor to 0 on back-facing (i.e. invisible) triangles

– Warning: some back facing triangle still contribute to a silhouette!

View frustum culling

– Don‘t waste tessellation power on invisible triangles

– Set tessellation factor to 0 if the whole triangle patch is outside the view frustum

Orientation-Adaptive Tessellation

– Only silhouette patches contribute to silhouette enhancement

– Silhouette patches therefore get higher tessellation factors

19 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

MATERIAL EDITOR

New Phong tessellation mode

Two new optimization options for all tessellation modes

20 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

UDKENGINE.INI

• Two new variables in UDKEngine.ini

• TessellationBackfaceCullingThreshold

• If (dot(N, V) < -TessellationBackfaceCullingThreshold)

 Tessellation factor = 0;

• TessellationOrientationThreshold

• EdgeScale = 1.0f – abs(dot(N, V));

• Tessellation factor =

(EdgeScale – TessellationOrientationThreshold) /

(1.0 – TessellationOrientationThreshold);

21 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PHONG TESSELLATION

No Tessellation Phong Tessellation with

backface culling and orientation

adaptive factor

22 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

REAL-TIME DEMO

How to activate Phong tessellation and optimizations in material editor

Show real-time orientation adaptive optimization demo in UE3 editor

23 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PERFORMANCE NUMBERS

Tessellation performance on AMD Radeon HD6970

BackfaceCullingThreshold=0.6

OrientationThreshold=0.0

24 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

MULTI-MONITOR

25 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

WHY SUPPORTING MULTI-MONITOR

Multi-monitor configurations are becoming more common as a result of the

affordability of LCD monitors!

Technically easy to support in your titles (with some extra care for HUD)

– Multi-Monitor is "just" a single larger render target from the programmer's perspective

AMD’s code submission for Eyefinity makes it even easier

– Developers are able to test multi-monitor on a single monitor system

26 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

SINGLE MONITOR VS. MULTI-MONITOR

27 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

HOW TO SUPPORT MULTI-MONITOR

Don’t block any special aspect ratio resolution (i.e. 5760x1200)

– Game should be flexible with its supported resolutions

Expand Field of View according to the resolution

– Most common Multi-Monitor resolution is 3:1 landscape

– Set vertical axis to a fixed FOV and let horizontal FOV expand with resolution

Place HUD to the middle monitor

Cut-scenes and movies should be played on the middle monitor and retain their

original aspect ratio

– Use bConstrainAspectRatio property of camera to keep the right aspect ratio for your movie

– FOV expansion will be disabled if bConstrainAspectRatio is TRUE

28 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

WHAT AMD HAS DONE FOR YOU

Use “AllowAMDEyefinity“ in UDKEngine.ini to enable Eyefinity support

Expand FOV according to the resolution

– Use "EyefinityFOVThreshold" in UDKEngine.ini to limit the Max FOV in X axis

Place HUD to the middle monitor

– Only works on Gfx HUD component

– It detects the Eyefinity mode then place Gfx HUD component against middle monitor

automatically

Test multi-monitor support on a single monitor

– Programmer fills out the window resolution and monitor configuration in C++ code

– This feature is only activated on debug version

– Convenient feature for developers if they don't have access to all Eyefinity configurations

29 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

SAMPLE SCREENSHOTS

30 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

SAMPLE SCREENSHOTS

31 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

REAL-TIME DEMO

Demonstrate UDKGame without Eyefinity support

Demonstrate how to test Eyefinity support on a single monitor machine

32 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

VERTEX SHADER BASED

BOKEH DEPTH OF FIELD

33 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

BOKEH DEPTH OF FIELD (DOF) IN UE3

New stunning UE3 post-processing effect introduced last GDC

In photography, Bokeh is the blur in out-of-focus areas of an image.

UE3 Bokeh DOF uses the Geometry Shader (GS) to generate a massive number

of point sprites to simulate Bokeh

– Generates 1 to 4 Bokeh point sprites for every 4 pixels of half-resolution image

UE3 renders Bokeh DOF into two layers (foreground and background) to avoid

artifacts

DirectX® 11 only

34 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

BOKEH DOF CODE SUBMISSION

Generating a massive number of point sprites in the GS impacts performance!

We moved it to the Vertex Shader (VS)

– Performance improvement is quite large on some hardware

– Visual results unchanged

Now supports DirectX 9 level hardware after moving it to the VS

– Cost a bit more video memory in DX9 mode to store vertex IDs

Video memory footprint is the same in DirectX 11 mode

– No actual vertex buffer is needed

Triangle and Quad Bokeh supported

35 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

VERTEX IDS

DirectX 11:

Use system-generated vertex IDs (SV_VertexID)

Bind NULL Vertex Buffer

– Vertices are generated in the vertex shader without buffer input

DirectX 9:

Generate a vertex buffer with vertex ID attributes to emulate same functionality

Generate (HalfResX/2)*(HalfResY/2)*3*4 vertices (for triangle Bokeh)

– (HalfResX/2)*(HalfResY/2)*6*4 vertices for quad bokeh

A new vertex buffer is created on resolution change

36 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

IMPLEMENTATION

Render the vertex buffer (NULL on DX11) as a triangle list

Use vertex ID to compute current Bokeh ID

– Triangle number = (VertexID/3). (VertexID%3) is local triangle vertex index

– If using quads: Quad number = (VertexID/6). (VertexID%6) is local quad vertex index

Compute the Bokeh position and texture coordinates in Vertex Shader

– For NULL Bokeh: place all vertices at the same position to skip rendering

– (VertexID%12) to get the vertex index ID in a Bokeh group

Place all last 9 vertices at the same position to eliminate 3 triangles

– (VertexID%24) for quad

37 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

IMPLEMENTATION

Shift and scale vertex position to simulate multiple viewports in DX11

– Original code uses multi-viewport to render both foreground and background Bokeh into a

single render target

– Use clip() in pixel shader to simulate viewport clipping

Compute the clip distance in Vertex Shader

Foreground

DOF Viewport

Background

DOF Viewport

38 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

IMPLEMENTATION

Alternate solution for simulating viewport clipping

– Create a bigger render target with buffer in the middle

– Faster, no clipping is needed

– Costs a little more video memory

– Bokeh may cross the buffer if it’s bigger than the buffer

Foreground

DOF Viewport
Background

DOF Viewport
buffer

39 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

TRIANGLE OR QUAD?

Should one use a triangle or quad to represent a point sprite?

Using triangles can reduce vertex processing cost by 50% compared to using quads

But triangle point sprite may not be a good solution for big Bokeh shapes

– Rasterization/fill-rate power will be wasted on invisible pixels (red area)

We implemented both

Simply use preprocess in C++ code to switch

– #define __TRIANGLE_BOKEH__ 1

Bokeh texture

 Wasted fill-rate

 Wasted fill-rate

40 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PERFORMANCE NUMBER

Performance test map : EpicCitadel

Small Bokeh setting (not fill-rate bound for triangle Bokeh)

41 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PERFORMANCE NUMBER

Bokeh DOF on AMD Radeon HD 6970 @ 1920x1080

42 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

PERFORMANCE NUMBER

Bokeh DOF on GTX 580 @ 1920x1080

43 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

POST-PROCESS FULLSCREEN ANTI-ALIASING (FSAA)

44 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

POST-PROCESS FSAA

Why using Post-Process Fullscreen Anti-Aliasing?

– MSAA doesn't work for deferred shading when using DX9 level hardware

– MSAA is expensive with deferred shading (performance and memory footprint)

– MSAA doesn't work with transparent textures (alpha-tested)

– Post-Process FSAA does not add any complexity to the rendering pipeline

– Easy to change, modify or optimize without adverse effects on other rendering stages

– It can also work with MSAA

UE3 supports two types of post-process FSAA since the July 2011 build

– Fast Approximate Anti-Aliasing (FXAA)

– Morphological Anti-Aliasing (MLAA)

45 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

COMPARISON

46 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

COMPARISON

No AA MLAA

47 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

FXAA OVERVIEW

Single-pass post-processing

No extra render target required

Tends to detect too many edges and prone to blur non-edge pixels

48 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

MLAA OVERVIEW

Three passes post-processing

– 1st Pass : Detect edges

– 2nd Pass : Compute edge length

– 3rd Pass : Blend edge color according to the edge type and length

Needs two extra render targets

– One is for storing edge mask

– One is for storing edge length

Can detect edges pretty well so that only edge pixels are anti-aliased

Adjustable edge detection level

– It's good for performance tuning

49 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

FXAA AND MLAA COMPARISON – EDGE DETECTION

Edge pixels detected by MLAA (in red) Edge pixels detected by FXAA (in red)

50 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

FXAA AND MLAA COMPARISON – EDGE DETECTION (ZOOMED-IN)

Edge pixels detected by MLAA (in red) Edge pixels detected by FXAA (in red)

51 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

UE3 POSTPROCESS AA

UE3 supports both from July 2011 build

Can be activated in uberpostprocess node

MLAA needs to be activated from UDKEngine.ini file

– bAllowPostProcessAA = True

– Default is OFF

Good AA solution for deferred shading

Supports both DX9 and DX11

52 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

CONCLUSION

Tessellation

– New Phong tessellation mode which generates similar visual output to PN-Triangle but at

much better performance

– New optimization options for all tessellation modes

Multi-monitor

– Automatic FOV expansion and HUD placement

– Simulate multi-monitor on single monitor system

Vertex Shader Based Bokeh DOF

– Huge performance improvement

– Support both DirectX 9 and DirectX 11

Post-processing FSAA

– Already in UE3 since the July 2011 build

– More efficient option over MSAA when using deferred shading

53 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

QUESTIONS?

Send your feedback/suggestion to

owen.wu@amd.com

CODE SUBMISSION DOWNLOAD LINKS

 https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/Eyefinity.rar

 https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/VSBokehDOF.rar

mailto:owen.wu@amd.com
https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/Eyefinity.rar
https://udn.epicgames.com/pub/Three/LicenseeCodeSubmissions/VSBokehDOF.rar

54 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

REFERENCES

Vlachos Alex, Jorg Peters, Chas Boyd and Jason L. Mitchell. "Curved PN

Triangles". Proceedings of the 2001 Symposium interactive 3D graphics (2001).

Tamy Boubekeur, Marc Alexa. Phong Tessellation. ACM Trans. Graph (2008).

Alexander Reshetov, Intel. Morphological Antialiasing

http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf

Timothy Lottes, NVIDIA. FXAA Whitepaper.

http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePa

per.pdf

http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf
http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf
http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf
http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf
http://visual-computing.intel-research.net/publications/papers/2009/mlaa/mlaa.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf

55 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

AFDS gives you direct access to some of the world’s authorities and the most detailed

training in heterogeneous computing, OpenCL™, OpenGL, DirectCompute, and C++ AMP.

10 Technical Tracks

1)Heterogeneous Computing

2)Web Technologies

3)Cloud Computing

4)Gaming and Consumer Graphics

5)Innovative Client Experiences

6)Multimedia Processing

7)Professional Graphics & Visual Computing

8)Programming Languages and Models

9)Programming Tools

10)Security

Industry Leading Keynotes

Phil Rogers, AMD

Tom Malloy, Adobe®

Dr. Amr Awadallah, Cloudera

Mark Papermaster, AMD

Phil Pokorny, Penguin Computing

June 11-14, 2012

amd.com/afds
AMD FUSION12 DEVELOPER SUMMIT (AFDS)

56 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

Be one of the first 100 GDC attendees

to register for AFDS and save $100.

REGISTER TODAY
Just use this code when you register:

GDC100

June 11-14, 2012

amd.com/afds
SPECIAL OFFER

FOR GDC ATTENDEES

57 | Enhancing Graphics in Unreal Engine 3 Titles using New Code Submissions | March 8, 2012

DISCLAIMER
The information presented in this document is for informational purposes only and may contain technical inaccuracies, omissions and

typographical errors.

The information contained herein is subject to change and may be rendered inaccurate for many reasons, including but not limited to

product and roadmap changes, component and motherboard version changes, new model and/or product releases, product differences

between differing manufacturers, software changes, BIOS flashes, firmware upgrades, or the like. AMD assumes no obligation to

update or otherwise correct or revise this information. However, AMD reserves the right to revise this information and to make changes

from time to time to the content hereof without obligation of AMD to notify any person of such revisions or changes.

 AMD MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE CONTENTS HEREOF AND ASSUMES NO

RESPONSIBILITY FOR ANY INACCURACIES, ERRORS OR OMISSIONS THAT MAY APPEAR IN THIS INFORMATION. THE

MATERIAL IS PROVIDED “AS IS.”

 AMD SPECIFICALLY DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING BUT NOT LIMITED TO THE IMPLIED

WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR NONINFRINGEMENT OF ANY

INTELLECTUAL PROPERY RIGHT. IN NO EVENT WILL AMD BE LIABLE TO ANY PERSON FOR ANY DIRECT, INDIRECT,

SPECIAL OR OTHER CONSEQUENTIAL DAMAGES ARISING FROM THE USE OF ANY INFORMATION CONTAINED HEREIN,

EVEN IF AMD IS EXPRESSLY ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

 Trademark Attribution

AMD, the AMD Arrow logo, and combinations thereof are trademarks of Advanced Micro Devices, Inc. in the United States and/or other

jurisdictions. Other names used in this presentation are for identification purposes only and may be trademarks of their respective

owners.

©2012 Advanced Micro Devices, Inc. All rights reserved.

